Smart Patch System (SPS) for Condition Based Maintenance of Rotorcraft Structures

001 Development, Validation, and Demonstration of HUMS Technologies to Detect Cracks and Damages in Rotorcraft Structures and Dynamic Components

Contract # DTFACT-05-C-00022

Review Meeting, June 2006

Amrita Kumar, Roy Ikegami, Shawn Beard, Ching Chao Liu

Acellent Technologies Inc.

155 C-3 Moffett Park Drive, Sunnyvale, CA 94089 Tel: (408) 745 1188, Fax: (408) 745 6168

Outline

- Background
- FAA project
 - ➤ Objectives/Goals
 - > Project status
- > Future work
 - ➤ Budget and expenditure status

Outline

- Background
- FAA project
 - ➤ Objectives/Goals
 - > Project status
 - > Future work
 - ➤ Budget and expenditure status

- Monitoring the continued health of aircraft subsystems and identifying problems before they affect airworthiness has been a long-term goal of the aviation industry.
- Structural health monitoring (SHM) offers the promise of a paradigm shift from schedule-driven maintenance to condition-based maintenance (CBM) of assets
 - Built-in sensor networks on the structure can provide crucial information regarding the condition and damage state of the structure.
 - Diagnostic information from sensor data can be used for prognosis of the health of the structure and facilitate informed decision processes with respect to inspection and repair, *e.g.*, repair *vs.* no repair or replacement.

About Acellent

Acellent was founded with a mission to provide products and services to customers with complete solutions for **Structural Health Monitoring** in order to:

- Improve reliability and safety
- Enhance structural performance
- Minimize unnecessary downtime
 - Reduce maintenance cost
 - Prolong structural life spans

SHM Concept/Vision

Benefits

Reduced Inspection costs

- •Real-time structural inspection
- Minimum human involvement

Real-time characterization of structural condition and integrity

Increased Safety

- Monitoring of impacts
- Detect cracks and fatigue damage

procedures for structural life-cycle management and maintenance

Improved processes and STRUCTURAL **HEALTH** MONITORING

Condition-based maintenance (CBM) of assets

Intelligent Structures

- Integrated sensor networks
- Information processing

Capabilities for acquisition, processing and analyzing data generated by embedded systems

Reduced Downtime

- Monitor inaccessible areas
- Prolong structural life spans

Infrastructure

Piezoelectric Sensor Network Principle

- Actuators excite structure
- Surrounding sensors record the transient stress waves

- Impacts excite structure
- Sensors record stress waves

Acellent's Products

Acellent is providing versatile tools to simplify the SHM process

SMART Layer®

- Thin, flexible sensor carrier
- Easy to install
- Minimized connections
- Multiple sensor types

SMART Suitcase

- Portable diagnostic hardware
- Customized form factor

ACESSTM / AIM

- General purpose software suite can be used for any sensor configuration and/or application
- ACESS damage detection software
- AIM impact detection software

SMART Layers

Flexibility

Ease of installation

Hybrid PZT-Strain gage

Incorporation of any type of sensors

SMART Suitcase

Data acquisition

Signal processing

Pulse-Echo mode

Wireless

- Location of structural change
- Customized Data Interpretation
 - ✓ Quantification
 - ✓ Relationship to damage

ACESS

AIM

- Real-time sensor data acquisition
- Real-time processing to detect impact location
- Diagnostic image display of impact locations
- Impact force/energy information to predict structure damages

Acellent's SHM systems

System components

SHM systems

- Passive
- Active
- Passive/Active

Passive system

- Finds location of impacts
- Records date/time of occurrence
- Determines impact force/energy when calibrated with known impacts
- Wireless

SHM systems

- Passive
- Active
- Passive/Active

Active system

- Finds location of structural changes
- Can scan large areas in minutes
- Can identify type/size of damage when calibrated with known damages

SHM systems

- Passive
- Active
- Passive/Active

Passive/Active system

- Finds location of impacts
- Quickly (in seconds) determines if impact has caused any structural changes
- Records date/time of occurrence
- Can identify type/size of damage when calibrated with known damages

Demonstrations

Acellent's Technology Demonstrations

Applications

- Hot-spot monitoring
 - Bonded repairs
 - Fatigue cracks

- Composites
 - Impact
 - Disbond / delamination

- Crash sensing
- Other

Outline

- Background
- FAA project
 - ➤ Objectives/Goals
 - > Project status
 - > Future work
 - Budget and expenditure status

Project goals

- Develop a Smart Patch System (SPS) that can be used for the in-service monitoring of the health of new and existing rotorcraft structures.
- Provide data for certification of the system for rotorcraft structures as per AC29-2C Section MG-15
- Overall Goals of the system will be to:
 - Reduce the total structural inspection costs for rotorcraft structures
 - Avoid structural failure and catastrophic failures
 - Provide maintenance credit by reducing the number of maintenance activities when the structural condition assessment shows no need of the scheduled work.

Rotorcraft structures

- Typically metal
- Fatigue cracks
- Inaccessible areas
- Dynamic components

Previous developments

Coupon level tests

Damage detection

Composite Doubler with PZT Health Monitoring							
Fatigue Cycles	Measured Total Crack Length	Estimated Crack Length from PZT Sensor Data (0 lbs. load)	Estimated Crack Length from PZT Sensor Data (34 kips load)				
Specimen 1 - Unflawed Composite Doubler							
0	0.00						
26,218	0.32	PZT Learning Data	PZT Learning Data				
47,000	0.70	PZT Learning Data	PZT Learning Data				
67,000	1.50	1.274	1.385				
87,000	2.44	1.956	2.367				
Specimen 2 - Composite Doubler with Disbond Flaws							
0	0.00						
19252	0.16	PZT Learning Data	PZT Learning Data				
29274	0.32	PZT Learning Data	PZT Learning Data				
38064	0.48	PZT Learning Data	PZT Learning Data				
51576	0.80	PZT Learning Data	PZT Learning Data				
60438	1.08	0.981	1.099				
66439	1.34	1.35	1.349				
76444	1.76	1 567	1.762				
82446	2.02	1.909	2.08				

Testing conducted with Sandia National Labs

Measurement from visual inspection

Measurement from Acellent's system

Previous developments

Component level tests

Date	Time	Cycles	Measured Disbond Area	Estimated Disbond Area	Uncertainty
01/06/05	05:46:52	10500	0.125		
01/06/05	05:57:46	11000	0.125		
01/06/05	06:11:14	11500	0.188		
01/06/05	06:48:26	12000		0.255	±0.151
01/06/05	07:11:38	12500		0.272	±0.170
01/06/05	07:28:12	13000		0.438	±0.360
01/06/05	07:40:32	13500		0.710	±0.672
01/06/05	07:55:10	13800		2.154	±2.545
			Cycles -	→	
		42000	40500	12000	

Previous developments

- Installed in February 2006 at Hill AFB
- Flight testing at Luke AFB for approx. 18 months

Flight Testing on F-16

Hardware

Project Information

- 5 year program
- Project start October 1, 2006
- Kick-off in January 2006
- Currently in Year 1 of project

Stanford University
Dept. of Aeronautics & Astronautics

Rotorcraft Manufacturer TBD

Outline

- Background
- FAA project
 - ➤ Objectives/Goals
 - > Project status
 - > Future work
 - Budget and expenditure status

Program Status

- Smart Patch System Design
 - Sensor Optimization
 - Wave propagation (Stanford)
- Damage Detection Software Development
 - Data management
 - System Architecture
 - Process Flow

SMART Patch System Design

Sensor optimization

There are several models that can be used during the design of a structure, however there are few or no models currently available to help design a structure with sensors for the purpose of structural health monitoring.

The primary requirements for the model are:

- Ability to design sensors and simulate wave propagation in a chosen structure
- ➤ Ability to model sensors, structures and sensor-structure interaction
- ➤ Versatility for use with metal or composite structures
- Ease of use

- Stanford has developed a Spectral Element Model (SEM) to analyze structures with built-in piezoelectric-based sensor networks.
- The tool serves two purposes:
 - ✓ to understand fundamentally the interaction not only between diagnostic wave and damages, but also between sensors/actuators and the host structures in ultrasonic frequency ranges; and
 - ✓ to optimize the design of sensor networks for maximizing sensor sensitivity and energy efficiency.
- A spectral element approach is adopted for this purpose.
- The software includes an equation solver and an interface program to link with commercial pre/post-processing software.
- An elasto-dynamic equation solver based on the spectral element method and explicit time integration scheme is also included, which provides an excellent solution convergence in ultrasonic wave propagation problems.
- The solver includes an algorithm to directly solve the coupled electro-mechanical field in piezoelectric materials.
- The interface programs link to commercial finite element-based CAD/ CAE programs to grant access to the geometrical complexity of host structures and to facilitate understanding of the physical phenomena

Key innovation for sensor optimization

- fundamental understanding of the complicated wave interactions

Model

- virtual simulation with the aid of computational method

Method of Approach

Spectral Element Method (SEM)

- dividing the domain into pieces (like FEM) + high order polynomial (like Spectral Method) by keeping small the number of elements

Characteristics

- high order accuracy and computational performance

Lagrange interpolation

Use of the Simulation

- understand interaction between diagnostic wave and damage
- understand interaction between sensor/actuator and structure
- optimize sensor sizes, shapes, locations and excitation signals etc.

SMART Patch Design

Preliminary Results

aluminum plate:

- -508mm X 508mm X 1mm
- -hole(10mm) & crack(8mm)

4 PZT disk sensors:

- -6.35mm diameter
- 0.25 mm thickness

sine wave actuation:

-5 peak/450kHz

508 mm

Geometric Configuration

Wave Development 50 μsec

Scatter at the Crack Tip

3D Mesh Configuration

Preliminary Results

- developed spectral element method-based dynamic equation solver
- added algorithm to solve coupled electro-mechanical field in sensors
- showed high performance of the spectral element method-based code
- examined the potential of this code to be integrated with the diagnostic methods for crack detection

Work in Process

developing the solver & interface programs

Future Work

- optimize sensor design and its network using the code
- integrate with SMART patch design

Damage detection software development

Software Architecture

Conceptual system layout

Acellent SHM Architecture

Outline

- Background
- FAA project
 - ➤ Objectives/Goals
 - > Project status
- > Future work
 - Budget and expenditure status

Future tasks

Next 6 months

- Smart Patch System Design
 - Continue Sensor Optimization with Stanford
 - Functional Hazards Assessment with rotorcraft manufacturer
 - SMART Patch design
- Damage Detection Software Development
 - Develop data management software
 - Process flow modules

Outline

- Background
- FAA project
 - ➤ Objectives/Goals
 - > Project status
 - > Future work
 - ➤ Budget and expenditure status

Budget and expenditures status

Total budget = \$1,034,999

Expenditures = \$51,941 + \$36,364 (Stanford invoice pending)

= \$ 88,305

Total Remaining = \$946,694